CERTAIN CONTINUA IN Sⁿ OF THE SAME SHAPE HAVE HOMEOMORPHIC COMPLEMENTS(1)

BY

VO-THANH-LIEM

ABSTRACT. As a consequence of Theorem 1 of this paper, we see that if X and Y are globally 1-alg continua in S^n $(n \ge 5)$ having the shape of the real projective space P^k $(k \ne 2, 2k + 2 \le n)$, then $S^n - X \approx S^n - Y$. (For $P^1 = S^1$, this establishes the last case of such a result for spheres.) We also show that if X and Y are globally 1-alg continua in S^n , $n \ge 6$, which have the shape of a codimension ≥ 3 , closed, 0 < (2m - n + 1)-connected, PL-manifold M^m , then $S^n - X \approx S^n - Y$.

1. Introduction. The problem of classifying the shape of compacta in S^n (or E^n) in terms of their complements in S^n (or E^n) has been studied by a number of people.

In [3], Chapman proved that two Z-sets in the Hilbert cube have the same shape if and only if their complements are homeomorphic. Working with Z_k -sets, Geoghegan and Summerhill [10] improved the finite dimensional theorem of Chapman [4] by reducing the condition $n \ge 3k + 3$ to $n \ge 2k + 2$.

Rushing, in [16], proved that for a continuum X in S^n $(n \ge 5)$, $Sh(X) = Sh(S^k)$ (S^k) is the standard k-sphere in S^n) is equivalent to $S^n - X \approx S^n - S^k$, if X is globally 1-alg in S^n and $k \ne 1$ $(S^n - X)$ must have homotopy type of S^1 if k = n - 2. He also gave an example to show that $S^n - X \approx S^n - S^1$ is not sufficient to imply $Sh(X) = Sh(S^1)$.

In [5], Coram, Daverman and Duvall proved that if dim $X \le n-3$, $X \subseteq E^n$ satisfies small loop condition (SLC) and X has the shape of a finite complex K in the trivial range, then X has a neighborhood N in E^n such that $N-X \approx \partial N \times [0, 1)$, where N is also a regular neighborhood of a copy of K in E^n $(n \ge 5)$.

Recently, Coram and Duvall have proved [6] the equivalence of $S^n - X \approx S^n - Y$ and Sh(X) = Sh(Y), where X, Y are sphere-like continua in S^n $(n \ge 5)$ (see definition in [15]) satisfying SLC and max $\{\dim X, \dim Y\} \le n - 4$.

Received by the editors February 17, 1975.

AMS (MOS) subject classifications (1970). Primary 57A15, 57A35; Secondary 57C20, 57C30, 57C40.

Key words and phrases. Stable end, H-cobordism, regular neighborhood, shape, globally 1-alg.

⁽¹⁾ This research will constitute a part of the author's doctoral dissertation under the direction of Professor T. B. Rushing at the University of Utah.

However, notice that the class of sphere-like continua is much smaller than the class of continua having the shape of sphere-like continua.

In this note, we consider globally 1-alg continua in S^n having either the shape of finite complexes in the trivial range or the shape of closed, simply connected PL-manifolds of codimension ≥ 3 . As a result, we solve the S^1 -case of Rushing [16]. Thus, we generalize the main result of Daverman [8].

I am very grateful to Professor T. B. Rushing for many helpful questions and discussions concerning this paper. I also thank Dr. R. Stern for his help.

- 2. Notation and definitions. Throughout this note, we use the following notations:
 - ≈ Homeomorphic or isomorphic
 - ≃ Homotopy equivalence or homotopic
 - ~ Homologous
 - ∂V , Int V Boundary, interior of a manifold V

 $i \text{ or } A \hookrightarrow B$ Inclusion map

 $f_*, f_\#$ Induced maps on homotopy, homology groups

 H_{\bullet} Singular homology, Z coefficients

 \check{H}^* Čech cohomology, Z coefficients

For basic shape theory results, we refer to [1] and [15]. For convenience, in this paper we use both shape theories [1] and [15] as is justified in [22].

A continuum X in S^n is said to be *globally* 1-alg in S^n if for every neighborhood U of X in S^n , there is a neighborhood V of $X(V \subset U)$ such that if $f: S^1 \longrightarrow V - X$, $f \sim 0$ in V - X, then $f \simeq 0$ in U - X.

An inverse sequence of groups

$$G_1 \stackrel{i_1}{\leftarrow} G_2 \stackrel{i_2}{\leftarrow} \cdots$$

is said to be constant if we have

$$\operatorname{Im} i_1 \underset{\approx}{\overset{i_1}{\rightleftharpoons}} \operatorname{Im} i_2 \underset{\approx}{\overset{i_2}{\rightleftharpoons}} \operatorname{Im} i_3 \overset{\approx}{\longleftarrow} \cdots.$$

An inverse sequence of groups

$$G_1 \stackrel{i_1}{\leftarrow} G_2 \stackrel{i_2}{\leftarrow} \cdots$$

is said to be stable if it has a constant subsequence.

Let X be a continuum in S^n . If $S^n - X$ is connected, then $S^n - X$ has a unique end ϵ . According to Siebenmann [17, Chapter III], the fundamental group $\pi_1(\epsilon)$ is stable if there is a nested sequence $\{V_j\}$ of connected neighborhoods of X such that the inverse sequence

$$\pi_1(V_1 - X) \stackrel{i_{1*}}{\leftarrow} \pi_1(V_2 - X) \stackrel{i_{2*}}{\leftarrow} \cdots$$

is constant, where $i_q:(V_{q+1}-X) \hookrightarrow (V_q-X)$.

In this case, $\pi_1(\epsilon)$ is said to be isomorphic to Im i_{1*} .

By a closed manifold, we mean a compact manifold without boundary.

For definitions of regular neighborhood, PL-embedding, PL-homeomorphism, etc., we refer to Hudson [12].

A complex K in S^n (or E^n) is said to be in *trivial range* if $2 \dim K + 2 \le n$. A continuum is a compact, connected space.

Let $\{\gamma_1, \ldots, \gamma_q\}$ be a family of pairwise disjoint simple closed curves in the interior of a 2-simplex Δ^2 . Let F be the closure of the component of $\Delta^2 - \bigcup_{i=1}^q \gamma_i$ which contains $\partial \Delta^2$. The components of ∂F other than $\partial \Delta^2$ are the outermost elements of $\{\gamma_1, \ldots, \gamma_q\}$.

3. Statement of main results.

THEOREM 1. Let X be a globally 1-alg continuum in S^n , $n \ge 5$, having the shape of a finite complex K^k $(2k + 2 \le n)$ such that $\pi_1(K)$ is abelian. If $\pi_1(K) = 0$ or $\pi_2(K) = 0$, then X has a neighborhood N, which is a regular neighborhood of a copy K_1 of K in S^n , such that $N - X \approx \partial N \times [0, 1)$ $(\approx N - K_1)$.

As an immediate consequence of Theorem 1, Lemma 4.3 of Geoghegan and Summerhill [10], and the unknottedness of trivial-range complexes [11], we obtain the following result.

THEOREM 2. Let X, Y be globally 1-alg continua in S^n , $n \ge 5$, having the shape of finite complexes K, L (respectively) in trivial range such that $\pi_1(K)$, $\pi_1(L)$ are abelian. If either $\pi_1(K) = \pi_1(L) = 0$ or $\pi_2(K) = \pi_2(L) = 0$, then Sh(X) = Sh(Y) if and only if $S^n - X \approx S^n - Y$.

COROLLARY 1. Let X, Y be globally 1-alg continua in S^n , $n \ge 5$, having the shape of the projective space P^k , $2k + 2 \le n$, $k \ne 2$. Then, $S^n - X \approx S^n - Y$.

COROLLARY 2. Let X be a globally 1-alg continuum in S^n , $n \ge 5$, then $Sh(X) = Sh(T^k)$ if and only if $S^n - X \approx S^n - T^k$ and X has the shape of a trivial-range finite complex K, with $\pi_2(K) = 0$ and $\pi_1(K)$ is abelian, where $2k + 2 \le n$

REMARK 1. This corollary generalizes the weakly flat 1-spheres theorem of Daverman [8, Theorem 1].

REMARK 2. Using J. Stallings' theorem in M. A. Kervaire [14, Theorem V] and imitating an example in [16], we can construct a globally 1-alg connected polyhedron X in S^n such that $Sh(X) \neq Sh(S^1)$ but $S^n - S^1 \approx S^n - X$ and $\pi_2(X) \neq 0$ (even though $\pi_1(X) \approx \pi_1(S^1) \approx Z$).

THEOREM 3. Let X be a globally 1-alg continuum in S^n $(n \ge 6)$, having the shape of a simply connected, finite complex K, dim $K \le n-3$. Then, S^n-X has a collar at the end ϵ , i. e. there is a PL-manifold neighborhood W of X in S^n such that $W-X \approx \partial W \times [0, 1)$.

(Furthermore, W and K have the same homotopy type.)

COROLLARY 3. Let X be a continuum in S^n $(n \ge 6)$ as in Theorem 3 above. If either $2 \dim k + 1 \le n$ or K is a closed PL-manifold, then $S^n - X \approx S^n - K_1$, where K_1 is the image of a PL-embedding of K into S^n .

The following corollary follows from Irwin's embedding theorem [13] and Zeeman's unknotting theorem [20].

COROLLARY 4. Let X and Y be globally 1-alg continua in S^n $(n \ge 6)$, which have the shape of a simply connected codimension ≥ 3 , closed, (2m - n + 1)-connected PL-manifold M^m . Then, $S^n - X \approx S^n - Y$.

REMARK 3. For $n \ge 6$, Corollary 4 generalizes the weakly flat k-spheres theorem of Duvall [9, Theorem 2.1], and it also generalizes Rushing [16, Theorem 3] for $2 \le k \le n-3$ and $n \ge 6$.

- 4. Details of the proof. Let X be a continuum in S^n . Suppose that X has the shape of a finite complex K^k . By Mardešić and Segal's definition of shape [15] (as observed [5]), we can find a cofinal sequence $\{V_i\}_{i=1}^{\infty}$ of connected neighborhoods of X in S^n with $V_{i+1} \subset V_i$, for each i, and maps $f_i: K \longrightarrow V_i$, $g_i: V_i \longrightarrow K$ such that if β^{ij} denotes the inclusion map of V_i into V_i for $i \ge j$, then
 - (1) f_i is a PL embedding for each i, if $2k + 1 \le n$,
 - (2) $f_i g_i \simeq \beta^{ij}$ if i > j,
 - (3) $g_i \beta^{ij} f_i \simeq 1_K$, and
 - (4) $\beta^{ij}f_i \simeq f_i$.

LEMMA 1. The following sequence is constant:

$$\cdots \longrightarrow H_1(V_{i+1}) \xrightarrow{(\beta^{j+1,j})_{\#}} H_1(V_j) \xrightarrow{(\beta^{j,j-1})_{\#}} H_1(V_{j-1}) \longrightarrow \cdots$$

and $\underline{\lim} H_1(V_j) \approx H_1(K)$.

PROOF. The following commutative diagram

gives

- (1) $(g_{j+1})_{\#}$, $(g_j)_{\#}$ are onto,
- (2) $(f_j)_{\#}, (f_{j-1})_{\#}$ are 1-1.

We have

$$\begin{split} \operatorname{Im}(\beta^{j+1,j})_{\#} &= \operatorname{Im}\left[(f_j)_{\#} \circ (g_{j+1})_{\#} \right] = \operatorname{Im}(f_j)_{\#} \\ &\approx (g_j)_{\#} \left(\operatorname{Im}(f_j)_{\#} \right) = \operatorname{Im}(g_j)_{\#} \left(= H_1(K) \right) \\ & \qquad \qquad \left(\operatorname{since} \ (g_j)_{\#} (f_j)_{\#} = 1_{\#} \right) \\ &\approx (f_{j-1})_{\#} \left(\operatorname{Im}(g_j)_{\#} \right) \quad \operatorname{since} \ (f_{j-1})_{\#} \text{ is } 1\text{-}1 \\ &= \operatorname{Im}(\beta^{j,j-1})_{\#}. \end{split}$$

Therefore, $(\beta^{j,j-1})_{\#} | \operatorname{Im}(\beta^{j+1,j})_{\#} : \operatorname{Im}(\beta^{j+1,j})_{\#} \longrightarrow \operatorname{Im}(\beta^{j-1,j})_{\#}$ is an isomorphism. That means the given sequence is constant. It is also clear that $\lim_{j \to \infty} H_1(K)$.

LEMMA 2. Let X be a continuum in S^n such that Sh(X) = Sh(K), where K is a finite complex. Then $H_q(V, V - X) = 0$ for all $q \le n - \dim K - 1$, and neighborhoods V of X in S^n .

PROOF. Indeed, we have

$$H_q(V, V - X) \approx \overline{H}^{n-q}(X)$$
 [19, Theorem 6.2.17]
 $\approx \check{H}^{n-q}(X)$ [19, Corollary 6.8.8]
 $\approx \check{H}^{n-q}(K)$ [15, Theorem 16]
 $= 0$ if $n - q > \dim K$ (i.e., $q \le n - \dim K - 1$).

LEMMA 3. Let X be a continuum in S^n having the shape of a finite complex K, dim $K \le n-3$, then the following sequence is constant.

$$\cdots \longrightarrow H_1(V_{j+1} - X) \xrightarrow{(i_j)_{\#}} H_1(V_j - X) \longrightarrow \cdots$$
and $H_1(\epsilon) \equiv \varprojlim H_1(V_j - X) \approx H_1(K)$.

PROOF. By Lemma 2, we have the following commutative diagram:

$$0 \longrightarrow H_1(V_{j+1} - X) \xrightarrow{\approx} H_1(V_{j+1}) \longrightarrow 0$$

$$\downarrow (i_j)_{\#} \qquad \qquad \downarrow (\beta^{j+1,j})_{\#}$$

$$0 \longrightarrow H_1(V_j - X) \xrightarrow{\approx} H_1(V_j) \longrightarrow 0$$

The lemma follows easily from Lemma 1.

LEMMA 4. Let X be a continuum in S^n having the shape of a finite complex K, with dim $K \le n-3$. If X is globally 1-alg in S^n , then the end ϵ of S^n-X is stable and $\pi_1(\epsilon) \approx H_1(K)$.

PROOF. (The proof of this lemma is similar to the last part of the proof of Lemma 1 in [7].)

We can choose a subsequence $\{V_{j_p}\}$ of $\{V_j\}$ such that every loop in $(V_{j_{p+1}}-X)$ which is null-homologous in $(V_{j_{p+1}}-X)$ is null-homotopic in

 $(V_{j_p} - X)$. Thus, we may assume the sequence $\{V_j\}$ has this property. Using the following commutative diagram

$$\pi_{1}(V_{j+1} - X) \xrightarrow{\varphi_{j+1}} H_{1}(V_{j+1} - X)$$

$$\downarrow (i_{j})_{*} \qquad \downarrow (i_{j})_{\#}$$

$$\pi_{1}(V_{j} - X) \xrightarrow{\varphi_{j}} H_{1}(V_{j} - X)$$

$$\downarrow (i_{j-1})_{*} \qquad \downarrow (i_{j-1})_{\#}$$

$$\pi_{1}(V_{j-1} - X) \xrightarrow{\varphi_{j-1}} H_{1}(V_{j-1} - X)$$

where φ_j 's are Hurewicz's homomorphisms, the globally 1-alg property implies that

$$\varphi_i \mid \operatorname{Im}(i_i)_{\bullet} : \operatorname{Im}(i_i)_{\bullet} \longrightarrow \operatorname{Im}(i_i)_{\#}$$

is an isomorphism, for each j, by the diagram chasing argument.

Therefore,

$$(i_j)_{\bullet} | \operatorname{Im}(i_j)_{\bullet} : \operatorname{Im}(i_j)_{\bullet} \longrightarrow \operatorname{Im}(i_{j-1})_{\bullet}$$

is an isomorphism and $\text{Im}(i_i)_* \approx H_1(K)$. \square

Thus, the open PL-manifold $S^n - X$ has a stable isolated end ϵ with $\pi_1(\epsilon) \approx H_1(K)$ being finitely presented. By Siebenmann [17, Theorem 3.10], there exist arbitrarily small 1-neighborhoods of ϵ , if $n \geq 5$; i.e., for every compact subset C of $S^n - X$, there is a neighborhood V of X in S^n such that

- (1) $V \cap C = \emptyset$,
- (2) the natural map $\pi_1(\epsilon) \longrightarrow \pi_1(V X)$ is an isomorphism,
- (3) the inclusion map $\partial V \subset V X$ gives an isomorphism $\pi_1(\partial V) \longrightarrow \pi_1(V X)$,
- (4) ∂V and V X are connected.

LEMMA 5. Let X be a continuum in S^n $(n \ge 5)$ having the shape of a finite complex K, with $\pi_1(K)$ abelian and dim $K \le n-3$. If X is globally 1-alg in S^n , then given any neighborhood U of X in S^n , there is a neighborhood V of $X(V \subset U)$ such that

- (1) V X is a 1-neighborhood of the end, and
- (2) $i_{\bullet}: \pi_1(V-X) \longrightarrow \pi_1(V)$ is an isomorphism.

PROOF. Let W be a neighborhood of X such that

- (1) $W \subset U$, and
- (2) W X is a 1-neighborhood of the end.

Let i > j be two integers and V a neighborhood of X such that

(1) $V \subset V_i \subset V_i \subset W \subset U$, and

(2) V - X is a 1-neighborhood of the end.

 $(V_i, V_i \text{ satisfies conditions (2), (3), (4) preceding Lemma 1.)}$

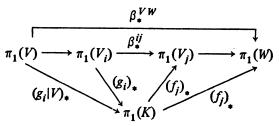
First, by Lemmas 2 and 4, and the following commutative diagram, we have $i_*: \pi_1(V-X) \longrightarrow \pi_1(V)$ is 1-1, since V-X is a 1-neighborhood of the end.

$$\begin{array}{ccc} \pi_1(V-X) \xrightarrow{i_{\bullet}} \pi_1(V) \\ \approx & & \downarrow \\ H_1(V-X) \xrightarrow{\approx} H_1(V) \end{array}$$

Then, $\beta_{\bullet}^{VW}i_{\bullet}:\pi_1(V-X) \longrightarrow \pi_1(W)(\beta^{VW}:V \hookrightarrow W)$ is also 1-1, by the following commutative diagram.

$$\begin{array}{c|c} \pi_1(V-X) \xrightarrow{i_*} \pi_1(V) \\ \approx & & \downarrow \beta_*^{VW} \\ \pi_1(W-X) \xrightarrow{1\cdot 1} \pi_1(W) \end{array}$$

Hence $(f_i)_*(g_i | V)_*i_*$ is one-to-one, since $\beta_*^{VW} = (f_i)_*(g_i | V)_*$ by the following commutative diagram.



We claim that $(g_i | V)_{\bullet}$ is one-to-one. Hence, it will follow that $\pi_1(V)$ is abelian, since $\pi_1(K)$ is abelian. Thus, i_{\bullet} is an isomorphism by the following commutative diagram.

$$\begin{array}{ccc}
\pi_1(V-X) \xrightarrow{l_{\bullet}} & \pi_1(V) \\
\downarrow \approx & & \downarrow \approx \\
H_1(V-X) \xrightarrow{\approx} & H_1(V)
\end{array}$$

We now prove the claim. Let $\varphi: \partial \Delta^2 \longrightarrow V$ be a loop representing an element of $\ker(g_i \mid V)_*$. Then $[\varphi] \in \ker \beta_*^{VW}$ since $\beta_*^{VW} = (f_j)_* (g_i \mid V)_*$; i.e., $\varphi \simeq 0$ in W.

Let $\overline{\varphi}: \Delta^2 \longrightarrow W$ be an extension of φ over Δ^2 into W. We may assume that $\overline{\varphi}(\partial \Delta^2) \cap \partial V = \emptyset$ and $\overline{\varphi}^{-1}(\partial V)$ is a family of disjoint simple closed curves in Int Δ^2 .

Let $\Gamma_1, \ldots, \Gamma_s$ be outermost loops in this family, then each $\overline{\varphi}(\Gamma_j)$ bounds a disk in W; hence $\overline{\varphi}(\Gamma_j) \simeq 0$ in W, $j = 1, \ldots, s$. Thus, $\overline{\varphi}(\Gamma_j) \simeq 0$ in $\overline{V} - X$,

for $j = 1, \ldots, s$, since $\overline{\varphi}(\Gamma_j) \subset V - X$ and $\beta_*^{VW} i_* : \pi_1(V - X) \longrightarrow \pi_1(W)$ is one-to-one.

Therefore, by changing the value of $\overline{\varphi}$ inside Γ_j , for $j=1,\ldots,s$, we can define $\overline{\varphi}$ to obtain an extension of φ in V over Δ^2 . In other words, $\varphi \simeq 0$ in V.

LEMMA 6. Let X be a continuum in S^n , $n \ge 5$, such that

- (1) Sh(X) = Sh(K), where K is a finite complex with $\pi_1(K)$ abelian and $\dim K \leq n-3$,
 - (2) X is globally 1-alg in S^n ,
 - (3) Either $\pi_1(K) = 0$ or $\pi_2(K) = 0$.

Then, given a neighborhood U of X, there is a neighborhood V of $X(V \subset U)$ such that $\pi_i(V, V - X) = 0$, for i = 0, 1, 2.

PROOF. Let V be a neighborhood of X as in Lemma 5.

(i) 1-connectedness is trivial, since

$$H_0(V, V - X) \approx \overline{H}^n(X) = H^n(K) = 0$$
, and $\pi_1(V - X) \xrightarrow{\approx} \pi_1(V) \longrightarrow \pi_1(V, V - X) \longrightarrow 0$.

(ii) To show $\pi_2(V, V - X) = 0$.

Case 1. $\pi_1(K) = 0$. We have

$$\pi_1(V) \approx \pi_1(V - X) \approx \pi_1(\epsilon) \approx H_1(K) = 0.$$

Hence, the relative Hurewicz isomorphism theorem [19, Theorem 7.5.4] gives

$$\pi_2(V, V - X) \approx H_2(V, V - X) = 0.$$

Case 2. $\pi_2(K) = 0$. We choose V' to be a small neighborhood of X such that

- (1) $V' \subset \text{Int } V$,
- (2) V' X is a 1-neighborhood of the end satisfying Lemma 5, and
- (3) $i_*: \pi_2(V') \longrightarrow \pi_2(V)$ is trivial. (From the fact that $\pi_2(K) = 0$ and Sh(X) = Sh(K).)

Now, let $\varphi:(\Delta^2, \partial \Delta^2) \longrightarrow (V, V - X)$ be a map representing an element of $\pi_2(V, V - X)$. We may assume $\varphi(\partial \Delta^2) \subset \partial V$.

Let T be a fine subdivision of Δ^2 so that for every $\sigma \in T$ we have $\varphi(\sigma) \subseteq$ Int V', if $\varphi(\sigma) \cap X \neq \emptyset$.

We are through if we have a map $G: \Delta^2 \times [0, 1] \longrightarrow V$ satisfying

- (1) $G \mid \Delta^2 \times 0 = \varphi$,
- (2) $G(\Delta^2 \times 1) \subset V X$,
- (3) $G(\partial \Delta^2 \times 1) \subset V X$.

First, we define $G: (T \times 0) \cup (T^{(1)} \times [0, 1]) \longrightarrow V$ as follows $(T^{(1)})$ is the 1-skeleton of T.

(i) $G \mid T \times 0 = \varphi$.

- (ii) Let v be a vertex of T. Then
 - (a) $G(v \times [0, 1]) = \varphi(v)$, if $\varphi(v) \notin X$.
- (b) $G(v \times [0, 1])$ is an arc α_v in V' joining $\varphi(v)$ and $G(v \times 1) \in V' X$, if $\varphi(v) \in X$.
 - (iii) Let (vw) be a 1-simplex of T. Then
 - (a) $G(x, t) = \varphi(x)$ for every $x \in \langle vw \rangle$, $t \in [0, 1]$, if $\varphi(\langle vw \rangle) \cap X = \emptyset$.
- (b) If $\varphi(\langle vw \rangle) \cap X \neq \emptyset$, then $G(\langle vw \rangle \times 1)$ will be an arc α_{vw} in V' X joining $G(v \times 1)$ and $G(w \times 1)$ such that the loop $G(\langle vw \rangle \times 0) \cup \alpha_v \cup \alpha_{vw} \cup \alpha_w$ is null-homotopic in V' (first we join $G(v \times 1)$ and $G(w \times 1)$ by an arc in V' X, then we use the fact that $\pi_1(V' X) \xrightarrow{\approx} \pi_1(V')$). Therefore, we can extend G over $\langle vw \rangle \times [0, 1]$ into V'.

Similarly for all 1-simplexes of T.

Secondly, we define $G: T \times [0, 1] \longrightarrow V$ as follows. Let σ be a 2-simplex of T.

- (a) If $\varphi(\sigma) \cap X = \emptyset$, $G(x, t) = \varphi(x)$, for every $x \in \sigma$ and $t \in [0, 1]$.
- (b) If $\varphi(\sigma) \cap X \neq \emptyset$, then G has been already defined on $(\sigma \times 0) \cup (\partial \sigma \times [0, 1])$ into V' with $G(\partial \sigma \times 1) \subset V' X$. It is clear that $G \mid \partial \sigma \times 1 \simeq 0$ in V', hence $G \mid \partial \sigma \times 1 \simeq 0$ in V' X. Therefore, we can extend G over $\sigma \times 1$ into V' X. Thus, $G(\partial (\sigma \times [0, 1])) \subset V'$. Now G can be extended over $\sigma \times [0, 1]$ into V by the choice of V'.

Similarly for all 2-simplexes of T, we can define a map $G: T \times [0, 1] \longrightarrow V$ such that $G \mid T \times 0 = \varphi$ and $G(T \times 1) \subset V - X$ as we desired.

PROOF OF THEOREM 1. The proof follows by combining Lemma 6 with the following result, the proof of which is intrinsic in [5].

LEMMA 7 (CORAM, DAVERMAN, DUVALL). Let X be a compactum in S^n , $n \ge 5$, which has the shape of a finite complex in the trivial range. Suppose that given a neighborhood U of X in S^n , there exists a neighborhood V such that $X \subseteq V \subseteq U$ and $\pi_i(V, V - X) = 0$ for i = 0, 1, 2. Then, X has a neighborhood N, which is a regular neighborhood of a copy K_1 of K in S^n , such that $N - X \approx \partial N \times [0, 1)$ ($\approx N - K_1$).

PROOF OF THEOREM 2. Since $S^n - X \approx S^n - K_1$ and $S^n - Y \approx S^n - L_1$ by Theorem 1, the conclusion of Theorem 2 is equivalent to saying that $K \simeq L$ if and only if $S^n - K \approx S^n - L$. The "only if" part is a special case of Theorem 1.

On the other hand, since K unknots in S^n , we may assume $K \cap L = \emptyset$. Again, since $K \cup L$ unknots in S^n , we may assume $K \cup L$ lies in S^{n-1} (the standard (n-1)-sphere). The "if" part of the theorem now follows from Lemma 4.3 of [10].

REMARK 4. Combining Theorem 2.4 in [5] and the proof of Theorem 2 above, we can state the following result.

Let X, Y be continua in S^n , $n \ge 5$, having the shape of finite complexes in the trivial range, satisfying SLC (definition in [5]) and max (dim X, dim Y) $\le n-3$. Then Sh(X) = Sh(Y) if and only if $S^n - X \approx S^n - Y$.

PROOF OF THEOREM 3. We have $\check{H}^*(X) \approx \check{H}^*(K)$, since $\mathrm{Sh}(X) = \mathrm{Sh}(K)$ [15, Theorem 16]. Hence, we can prove that $H_*(S^n - X)$ is finitely generated by using Alexander duality and the fact that $H^*(K)$ is finitely generated.

Furthermore, the end ϵ is stable and $\pi_1(\epsilon) \approx H_1(K) = 0$ (Lemma 4). We have $S^n - X$ is PL-homeomorphic to the interior of a compact PL *n*-manifold M [17, Theorem 5.9]. Then, we may assume that M is contained in $S^n - X$.

Let $W = S^n - \text{Int } M$. It is clear that W - X is PL-homeomorphic to $\partial W \times [0, 1)$.

Now, it is easy to see that X has a nested sequence $\{W_j\}$ of PL n-manifold neighborhoods such that $W_1 = W$ and the inclusion $W_{j+1} \hookrightarrow W_j$ is a homotopy equivalence for every $j \in N$. By terminology of [15], we can say that X is associated with the ANR-sequence $X = \{W_j, i_{j+1,j}, N\}$. Then, by Theorem 6 and Theorem 5 of [15], Sh(X) = Sh(W). Hence $W \cong K$ by Theorem 4 in [15] and 8.6 of [1].

PROOF OF COROLLARY 3. Let $f:K \to \operatorname{Int} W$ (W in the previous theorem) by a map that defines the homotopy equivalence between K and Int W. We may assume that f is a PL-embedding by the following observation. If $2 \dim K + 1 \le n$, f is homotopic to a PL-embedding in Int W by PL-approximation and general position theorem. If K is a closed PL-manifold and $\dim K \le n - 3$, f is homotopic to a PL-embedding in Int W by Corollary 11.3.4 [21]. Therefore, in either case, f is homotopic to a PL-embedding in Int W, say f'. It is clear that f' is also a homotopy equivalence. That proves the claim.

Let $K_1 = f(K)$. Then $K_1 \hookrightarrow \text{Int } W$ is also a homotopy equivalence.

We can now apply Theorem 2.1 of [18] to conclude that Int W is PL-homeomorphic to the interior of a regular neighborhood N of K_1 in S^n , fixing K_1 $(\pi_1(\partial W) = 0 = \pi_1(\operatorname{Int} W))$.

Now, it can be shown that the PL *n*-manifold $\overline{W-N_1}$ is a *H*-cobordism whose boundary is $\partial W \cup \partial N_1$ with $\pi_1(\partial W) = 0$ and $\pi_1(\partial N_1) = 0$ where N_1 is a regular neighborhood of K_1 in Int W. From *H*-cobordism theorem, we infer that $W-K_1 \approx \partial W \times [0,1) \approx W-X$, and the corollary follows.

REFERENCES

- 1. K. Borsuk, Concerning homotopy properties of compacts, Fund. Math. 62 (1968), 223-254. MR 37 #4811.
- W. Browder, Structures on M × R, Proc. Cambridge Philos. Soc. 61 (1965), 337—
 MR 30 #5321.
- 3. T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), 181-193. MR 47 #9530.
- 4. ———, Shape of finite-dimensional compacta, Fund. Math. 76 (1972), 261-276. MR 47 #9531.

- 5. D. Coram, R. J. Daverman, and P. F. Duvall, Jr., A small loop condition for embedded compacta, Trans. Amer. Math. Soc. (to appear).
 - 6. D. Coram and P. Duvall, Jr., Neighborhoods of sphere-like continua (to appear).
- 7. R. J. Daverman, Homotopy classification of complements of locally flat codimension two spheres (to appear).
 - 8. ——, On weakly flat 1-spheres, Proc. Amer. Math. Soc. 38 (1973), 207-210.
- 9. P. F. Duvall, Jr., Weakly flat spheres, Michigan Math. J. 16 (1969), 117-124. MR 39 #7604.
- 10. R. Geoghegan and R. R. Summerhill, Concerning the shapes of finite-dimensional compacta, Trans. Amer. Math. Soc. 179 (1973), 281-292. MR 48 #2987.
- 11. V. K. Gugenheim, Piecewise linear isotopy and embeddings of elements and spheres. I, Proc. London Math. Soc. (3) 3 (1953), 29-53. MR 15, 336.
- 12. J. F. P. Hudson, *Piecewise linear topology*, Univ. of Chicago Lecture Notes, New York and Amsterdam, 1969. MR 40 #2094.
- 13. M. C. Irwin, Embeddings of polyhedral manifolds, Ann. of Math. (2) 82 (1966), 1-14. MR 32 #460.
- 14. M. A. Kervaire, On higher dimensional knots, Differential and Combinatorial Topology (A Sympos. in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J., 1965, pp. 105-119. MR 31 #2732.
- 15. S. Mardešić and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), 41-59. MR 45 #7686.
- 16. T. B. Rushing, The compacta X in S^n for which $Sh(X) = Sh(S^k)$ is equivalent to $S^n X \approx S^n S^k$, Fund. Math. (to appear).
- 17. L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Ph. D. Dissertation, Princeton University, 1965.
- 18. ——, On detecting open collars, Trans. Amer. Math. Soc. 142 (1969), 201-227. MR 39 #7605.
- 19. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007.
- 20. E. C. Zeeman, Seminar on combinatorial topology, Mimeographed Notes, Inst. Hautes Études Sci., Paris, 1963.
 - 21. C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970.
- 22. S. Mardešić and J. Segal, Equivalence of the Borsuk and the ANR-system approach to shapes, Fund. Math. 72 (1971), 61-68. MR 46 #850.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112

Current address: Department of Mathematics, University of Georgia, Athens, Georgia 30602